个人简介
唐韬,男,伟德BETVLCTOR1946专职教师,硕士生导师。2021年毕业于悉尼科技大学计算机科学专业,获PHD。主要研究领域包括生物信息,机器学习,第二代测序数据压缩,第二/三代测序数据纠错,蛋白质交互作用识别等,作为第一作者发表SCI论文多篇。
科研项目
主持项目:
2021年 伟德源自英国始于1946高层次人才项目,NY221149,“基于机器学习的第三代测序数据纠错”,在研
2022年 国家自然科学委员会青年基金项目,62202236,“高通量测序的序列数据压缩以及纠错算法研究” ,在研
主要参与项目:
2017 悉尼大学与Human Centred Technology Research Centre合作项目, Clustering of the immune response data to West Nile virus,结题
2018 澳大利亚研究理事会,科研探索项目(ARC DP),180100120,结题
2020 悉尼科技大学与新南威尔士州公共服务委员会合作项目, People Matter Employee Survey Data Analytics,结题
论文
1. Tang, T., Wu, H., Bao, W., Yang, P., Yuan, D., & Zhou, B. B. (2019, December). New Parallel Algorithms for All Pairwise Computation on Large HPC Clusters. In 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT) (pp. 196-201). IEEE.
2. Tang, T., Liu, Y., Zhang, B., Su, B., & Li, J. (2019). Sketch distance-based clustering of chromosomes for large genome database compression. BMC genomics, 20(10), 1-9.
3. Tang, T., & Li, J. (2021). Transformation of FASTA files into feature vectors for unsupervised compression of short reads databases. Journal of bioinformatics and computational biology, 19(01), 2050048.
4. Tang, T., & Li, J. (2022). Comparative studies on the high-performance compression of SARS-CoV-2 genome collections. Briefings in Functional Genomics, 21(2), 103-112.
5. Tang, T., Hutvagner, G., Wang, W., & Li, J. (2022). Simultaneous compression of multiple error-corrected short-read sets for faster data transmission and better de novo assemblies. Briefings in Functional Genomics.
6. Tang, T., Zhang, X., Liu, Y., Peng, H., Zheng, B., Yin, Y., & Zeng, X. (2023). Machine learning on protein--protein interaction prediction: models, challenges and trends. Briefings in Bioinformatics
联系方式:tangtao@njupt.edu.cn